Calcium hydroxide pastes: classification and clinical indications

L. R. G. Fava1 & W. P. Saunders2

1 Endodontic Practice, São Paulo, Brazil, and 2 Adult Dental Care Education Group, University of Glasgow Dental School, Glasgow, UK

Abstract

Review article Calcium hydroxide has been used in endodontology for many years. The aim of this paper is to review the various formulations of calcium hydroxide that have been described, with specific reference to the vehicle used to carry the compound. The requirements for a vehicle are described, and ex vivo and in vivo studies reviewed. Vehicles can be classified into aqueous, viscous and oily, the clinical properties of calcium hydroxide changing depending on the vehicle. The review also describes the use of various active components that have been added to calcium hydroxide, including antimicrobial and anti-inflammatory agents. This review will help clinicians to make informed judgements about which formulations of calcium hydroxide should be used for specific endodontic procedures.

Keywords: calcium hydroxide, pastes, vehicles.

Introduction

Since the introduction to dentistry of calcium hydroxide by Hermann (1920, 1930), this medicament has been indicated to promote healing in many clinical situations. However, the initial reference to its use has been attributed to Nygren (1838) for the treatment of the ‘fistula dentalis’, whilst Codman (1851) was the first to attempt to preserve the involved dental pulp.

According to Cvek (1989) calcium hydroxide became more widely known in the 1930s through the pioneering work of Hermann (1936) and the introduction of this material in the United States (Teuscher & Zander 1938, Zander 1939). The first reports dealing with successful pulpal healing using calcium hydroxide appeared in the literature between 1934 and 1941. Since then, and mainly after the Second World War, the clinical indications for its use were expanded and now this chemical is considered the best medicament to induce hard tissue deposition and promote healing of vital pulpal and periapical tissues (Garcia 1983).

Although the overall mechanisms of action of calcium hydroxide are not fully understood, many articles have been published describing its biological properties which are achieved by the dissociation in Ca2+ and OH– ions. The role of the high pH and the ionic activity in the healing process, diffusion through dentinal tubules, influence on apical microleakage and some clinical topics, such as the placement of the paste within the root canal, how to deal with interim flare-ups, the importance of periodic follow-up and redressings and the importance of the interappointment restoration, are examples of how this material has been evaluated since its introduction.

Along with the expanded clinical use of calcium hydroxide, the literature also discusses the use of various formulations and provides suggestions for mixing calcium hydroxide powder with other substances. As will be seen, many substances have been added to the powder to improve properties such as the antibacterial action, radiopacity, flow and consistency. Furthermore, pastes may be prepared at
the chairside before use but there are also many proprietary brands which have been tested in both animals and humans. However, it seems that no one paste has been proved to be superior than the others, either biologically or clinically.

In spite of the variations, the literature lacks a classification of these different paste formulations; Holland (1994) has been the only author to suggest a classification according to the vehicle of the paste. The purpose of the present paper is to classify and describe the different formulations of calcium hydroxide, relating these to in vitro investigations, evaluation in laboratory animals and clinical studies where different pastes have been employed. This may help the clinician to choose the correct paste and to understand why a paste containing a specific vehicle should be employed clinically.

Chemical characteristics of calcium hydroxide

Limestone is a natural rock mainly composed of calcium carbonate (CaCO₃) which forms when the calcium carbonate solution existing in mountain and sea water becomes crystallized (Alliet & Vande Voorde 1988). The combustion of limestone between 900 and 1200°C causes the following chemical reaction:

\[\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \]

The calcium oxide (CaO) formed is called ‘quicklime’ and has a strong corrosive ability. When calcium oxide contacts water, the following reaction occurs:

\[\text{CaO} + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 \]

Calcium hydroxide is a white odourless powder with the formula Ca(OH)₂, and a molecular weight of 74.08. It has low solubility in water (about 1.2 g L⁻¹ at 25°C), which decreases as the temperature rises; it has a high pH (about 12.5–12.8) and is insoluble in alcohol. This low solubility is, in turn, a good clinical characteristic because a long period is necessary before it becomes soluble in tissue fluids when in direct contact with vital tissues. The material is chemically classified as a strong base (Maisto & Capurro 1964, Maisto 1975, Torneck et al. 1983, Badillo et al. 1985, Lopes et al. 1986, 1996, Malo et al. 1987, Ricci & Travert 1987, Cvek 1989, Estrela 1994).

A chemical analysis of OH⁻ ionic liberation from calcium hydroxide allows the percentages of Ca²⁺ and OH⁻ ions that are released to be determined (Estrela 1994):

\[
\begin{align*}
\text{Ca(OH)}^2+ &\rightarrow \text{Ca}^2+ + \text{OH}^- \\
\text{1} \times \text{Ca}^2+ &= 40.08 \\
\text{1} \times 17.0 &= 34 \\
\text{1} \times \text{Ca(OH)}_2 &= 40.08 + 34 = 74.08
\end{align*}
\]

The main actions of calcium hydroxide come from the ionic dissociation of Ca²⁺ and OH⁻ ions, and the action of these ions on vital tissue and bacteria generates the induction of hard tissue deposition and the antibacterial effect (Estrela 1994). However, when Ca²⁺ ions come into contact with carbon dioxide (CO₂) or carbonate ions (CO₃⁻) in tissue, calcium carbonate is formed which alters the mineralization process by the overall consumption of the Ca²⁺ ions (Maisto & Capurro 1964, Berbert 1978, Holland et al. 1979b). Furthermore, calcium carbonate has neither biological nor antibacterial properties (Estrela 1994).

When calcium hydroxide powder is mixed with a suitable vehicle, a paste is formed and, because the main component is calcium hydroxide, Maisto (1975) classified these formulations as alkaline pastes because of their high pH. According to some authors (Maisto 1975, Goldberg 1982, Leonardo et al. 1982), these pastes should have the following characteristics:

1. composed mainly of calcium hydroxide which may be used in association with other substances to improve some of the physicochemical properties such as radiopacity, flow and consistency;
2. non-setting;
3. can be rendered soluble or resorbed within vital tissues either slowly or rapidly depending on the vehicle and other components;
4. may be prepared for use at the chairside or available as a proprietary paste;
5. within the root canal system they are used only as a temporary dressing and not as a definitive filling material.
The easiest method to prepare a calcium hydroxide paste is to mix calcium hydroxide powder with water until the desired consistency is achieved. However, Leonardo et al. (1982) stated that a paste prepared with water or other hydrosoluble non-viscous vehicle does not have good physicochemical properties, because it is not radio-opaque, is permeable to tissue fluids and is rendered soluble and resorbed from the periapical area and from within the root canal. For these and the following reasons, Leonardo et al. (1982) recommended the addition of other substances to the paste:

1. to maintain the paste consistency of the material which does not harden or set;
2. to improve flow;
3. to maintain the high pH of calcium hydroxide;
4. to improve radiopacity;
5. to make clinical use easier;
6. not to alter the excellent biological properties of calcium hydroxide itself.

In essence, a calcium hydroxide paste for use in endodontics is composed of the powder, a vehicle and a radiopacifier. Other substances may be added to improve physicochemical properties or the antibacterial action.

Types of vehicles and their importance

It has been asserted that all biological actions of calcium hydroxide will be progressed by the ionic dissociation in Ca\(^{2+}\) and OH\(^{-}\) ions (Leonardo et al. 1982, Estrela 1994). The vehicle plays a most important role in the overall process because it determines the velocity of ionic dissociation causing the paste to be solubilized and resorbed at various rates by the periapical tissues and from within the root canal (Fava 1991). According to Fava (1991), the ideal vehicle should:

1. allow a gradual and slow Ca\(^{2+}\) and OH\(^{-}\) ionic release;
2. allow slow diffusion in the tissues with low solubility in tissue fluids;
3. have no adverse effect on the induction of hard tissue deposition.

Some *in vitro* studies have shown that the type of vehicle has a direct relationship with the concentration and the velocity of ionic liberation as well as with the antibacterial action when the paste is carried into a contaminated area (Marques et al. 1994, Estrela & Pesce 1996).

The differences in the velocity of ionic dissociation are related directly to the vehicle employed to obtain the paste. Furthermore, it is important to consider that viscosity is a measurement of the inner friction of a fluid. Thus, if a solution flows easily it has a low viscosity and the interactions between the particles are very small. As the paste is considered chemically to be a colloid (a solid dispersed into a liquid), this liquid (vehicle) may facilitate or inhibit the ionic dispersion from the paste; the lower the viscosity, the higher will be the ionic dissociation (Estrela 1994).

In general, three types of vehicles are used: aqueous, viscous or oily (Fava 1991, Holland 1994, Lopes et al. 1996). The first group is represented by water-soluble substances, including water, saline, dental anaesthetics with or without a vasoconstrictor, Ringer’s solution, aqueous suspension of methylcellulose or carboxymethylcellulose and anionic detergent solution.

When calcium hydroxide is mixed with one of these substances, Ca\(^{2+}\) and OH\(^{-}\) are rapidly released. This type of vehicle promotes a high degree of solubility when the paste remains in direct contact with the tissue and tissue fluids, causing it to be rapidly solubilized and resorbed by macrophages. The root canal may become empty in a short period, delaying the healing process (Esberard 1992). From a clinical standpoint, this means that the root canal must be re-dressed several times until the desired effect is achieved, thereby increasing the number of appointments (Fava 1991).

Some viscous vehicles are also water-soluble substances that release Ca\(^{2+}\) and OH\(^{-}\) ions more slowly for extended periods. They promote a lower solubility of the paste when compared with aqueous vehicles, probably because of their high molecular weights (Lopes et al. 1998).

According to Silva (1988) the high molecular weight of these vehicles minimizes the dispersion of calcium hydroxide into the tissue and maintains the paste in the desired area for longer intervals; this factor prolongs the action of the paste, and Ca\(^{2+}\) and OH\(^{-}\) ions will be given off at lower velocity. It is through this mechanism that these pastes remain in direct contact with vital tissues for extended time intervals. As a viscous vehicle-containing paste may remain within the root canal for a 2–4 month interval, the number of appointments and re-dressings of the root canal is drastically reduced (Fava 1991). Some examples of viscous vehicles are glycerine, polyethylene glycol and propylene glycol.

Oily vehicles are non-water-soluble substances that promote the lowest solubility and diffusion of the paste.
within the tissues (Lopes 1987, Marques et al. 1994, Lopes et al. 1996). Pastes containing this kind of vehicle may remain within the root canal for longer than the pastes containing aqueous or viscous vehicles. Some examples of oily vehicles are olive oil, silicone oil, camphor (the essential oil of camphorated parachlorophenol), metacresylacetate and some fatty acids such as oleic, linoleic and isostearic acids (Holland et al. 1979a, 1983, Kawakami et al. 1987a, Lopes 1987, Matsumoto et al. 1989, Caputo 1997, Lopes et al. 1998).

The description of the following clinical example may clarify why the type of vehicle is so important. In cases of dental replantation, as soon as treatment is performed, a paste with an aqueous vehicle should be employed because of the need for rapid ionic release and pH turnover to avoid replacement resorption. Subsequently, a calcium hydroxide paste with a viscous vehicle should be used in the following periodical redressings, because the paste may remain in the root canal for a longer period. During this time the pH will be maintained in the area and a slow ionic release will occur. The alkaline properties of the calcium hydroxide in such a paste will only be exhausted after a long period (Leonardo et al. 1993a).

Summarizing, clinical situations that require a rapid ionic liberation at the beginning of treatment require an aqueous vehicle-containing calcium hydroxide paste, whilst in clinical situations that require a gradual and uniform ionic liberation, a viscous vehicle-containing paste should be used. Pastes containing oily vehicles have restricted use and are only employed in those clinical situations that require a very slow ionic dissociation.

Thus, the vehicle used with calcium hydroxide represents a very important component of these pastes, and for this reason classification of these pastes has been made according to the type of the vehicle.

Aqueous vehicles

Pastes prepared at the chairside

Water. The easiest method to prepare a calcium hydroxide paste is to mix the powder with water. However, the literature describes different ‘types’ of water with which to prepare the paste, including sterile water, distilled water, sterile distilled water, bidistilled water and sterile bidistilled water. Usually this paste is prepared on a sterile glass slab with a sterile spatula. The powder is mixed with the liquid until the desired consistency is achieved. The paste is carried into the root canal by any available method.

Some chemical characteristics of such a paste were evaluated by different authors, including its pH (Conrado et al. 1965, Leonardo et al. 1992), ionic dissociation (Leonardo et al. 1992) and its diffusion through dentine (Leonardo et al. 1993a, Esberard et al. 1996). The antibacterial effect was studied by Martins et al. (1979), Bremer (1980) and Di Fiore et al. (1983), whilst the solvent action was evaluated by Hasselgren et al. (1988).

This paste has been evaluated for the tissue reactions when implanted in rat subcutaneous connective tissue (Mitchell & Shankwalker 1958), for its ability to induce hard tissue deposition in apexification procedures in non-vital dog teeth (Silva et al. 1991) and in replacement resorption in replanted rat teeth (Okamoto et al. 1996).

In human clinical studies this paste has been indicated for capping of vital pulp tissue after pulpotomy (Russo et al. 1974b), as a long-term dressing in cases of non-vital teeth with associated large periapical lesions (Sahli 1988, Souza et al. 1989) and in apexification procedures (Taintor 1977, Winter 1977, Harrison & Rakusin 1985, Yates 1988).

To improve the radiopacity of the paste, some authors (Webber et al. 1981, Kleier et al. 1985, Moraes et al. 1992) suggest adding barium sulphate (one part) to the calcium hydroxide powder (eight parts) before the preparation of the paste.

Sterile water. In animals, a paste containing such a vehicle was evaluated in apexification procedures in dog teeth (Vojinovic & Srnie 1975) and as a dressing in infected root canals (Matsumiya & Kitamura 1960). An interesting in vitro study was performed by Kehoe (1987) to evaluate the pH reversal after bleaching of pulpless teeth.

In humans this paste has been indicated for direct pulp capping (Sommer et al. 1975, Horsted et al. 1985), pulpotomy and apexogenesis (Corpron & Dowson 1970, Goldman 1974, Sommer et al. 1975, Naulin-Ili 1986, Sheehy & Roberts 1997), apexification procedures (Erdogan 1997), as an apical plug before gutta-percha filling in non-vital teeth with an open apex (Michanowicz & Michanowicz 1967) and in cases of internal resorption with perforation of the dentinal wall (Barclay 1993).

Distilled water. Pastes containing this vehicle were chemically evaluated for its pH (Conrado et al. 1965,

It is important to highlight that Crabb (1965) was the first to use this paste in the treatment of large periapical lesions. He said: ‘...perhaps the locally destructive action of calcium hydroxide with its high pH, acting as a chemical cautery, might effect breakdown of the epithelium’.

This paste was evaluated for tissue reaction when implanted in the subcutaneous connective tissue (Souza et al. 1977) and pulpotomy of rats (Silva et al. 1996). It was evaluated for its effect on dentine (Holland et al. 1978a), as a direct pulp capping material (Ogawa et al. 1974, Holland et al. 1980a, 1982), as a temporary dressing material after vital pulp extirpation (Sekine et al. 1963a, Holland et al. 1978b, 1981), in apexification procedures (Binnie & Rowe 1973) and for the treatment of chronic periapical lesions in dogs (Holland et al. 1979b).

Clinically, it has been employed for the induction of hard tissue deposition in apexification procedures (Saad 1988, Yang et al. 1990), in pulpotomy of deciduous (Androni & Russo 1974) or permanent teeth (Acosta & Heredia 1986), as a temporary dressing after vital pulp extirpation (Leonardo 1973) and in non-vital teeth with associated chronic periapical disease (Crabb 1965, Sardi et al. 1995), in internal resorption (Souza Neto et al. 1991), in perforations (Bogaerts 1997) and to arrest external cervical resorption after bleaching of pulpless teeth (Santos 1996).

It has been suggested that iodoform or bismuth carbonate should be added to improve the radiopacity of the paste (Holland et al. 1981, Rezende 1982).

An old suggestion proposed by Yacometti (1952) was to add penicillin to a calcium hydroxide-distilled water paste to be used as a pulp capping material.

Sterile distilled water. This paste was evaluated for human direct pulp capping (Patterson & Van Huysen 1954), in apexification procedures (Wechsler et al. 1978) and, in animal studies, for its intradental calcium diffusion (Guigand et al. 1997).

Bidistilled water. According to Laurichesse (1980) it was Albou who first used bidistilled water as the vehicle of the paste in normal clinical cases. However, in cases of infected non-vital teeth, some drops of camphorated parachlorophenol were added to the paste.

Sterile bidistilled water. This vehicle was recommended by Breillat et al. (1983a,b) for human apexogenesis and apexification procedures.

Saline or sterile saline. According to the United States Pharmacopeia (1989) saline is prepared by dissolving 9 g of sodium chloride in water to make 1000 mL.

When this paste was implanted in vital tissues, the reactions were evaluated by Pissiotis & Spangberg (1990) and Wakabayashi et al. (1993). In animal studies, the paste was evaluated in direct pulp capping (Tziaras & Molyvdas 1988) and in the apexification of immature non-vital dog (Citrome et al. 1979) and monkey teeth (Nevins et al. 1978) and to arrest inflammatory resorption in replanted dog teeth (Tropp et al. 1992, 1995).

Recently, Yoshiya et al. (1994) proposed a new formulation, adding x-tricalciumphosphate to the calcium hydroxide powder and saline for capping amputed pulps. Sazak et al. (1996) have suggested
adding Ledermix (Lederle Lab., München, Germany) to a calcium hydroxide-saline paste to be used after pulpotomy with the purpose of reducing postoperative pain and inflammation.

Anaesthetic solutions. Anaesthetic solutions, with or without a vasoconstrictor, have been used as the vehicle of the paste because these solutions are readily available, sterile and easy to handle.

It is interesting to note that most of these solutions have an acid pH, but when mixed with the calcium hydroxide powder, the final paste has a high pH which is maintained over time. Furthermore, they promote a rapid ionic release (Stamos et al. 1988, Marques et al. 1994, Prokopowitsch 1994, Estrela et al. 1995b, Fuss et al. 1996, Peniche et al. 1996).

As the final paste lacks radiopacity, some authors add barium sulphate (one part) to calcium hydroxide powder (four parts) (Dumsha & Gutmann 1985). Marais (1996) believes this proportion is not necessary for a high radiopacity and uses a 1:8 ratio. To increase the antibacterial property of the paste, Teplitzky (1986) suggested adding one drop of camphorated parachlorophenol when used as a dressing in infected non-vital cases.

This paste has been indicated for human apexification procedures by Goldman (1974), Taintor (1977), Webber et al. (1981) and Webber (1984) and as a pulp capping material by Armstrong & Hoffman (1962).

Ringer’s solution. According to the United States Pharmacopeia (1989), this solution has sodium chloride (8.6 g), potassium chloride (0.3 g), calcium chloride (0.33 g) and water to 1000 mL.

Historically, it was Granath (1959) who was the first to describe the use of such a paste in cases of traumatic injuries, although some authors (Martin & Crabb 1977, Ricci & Travert 1987, Foreman & Barnes 1990, Fusa 1991) believe he was also the first to employ a calcium hydroxide paste in root-end induction procedures. This is not correct because the oldest reference in which a calcium hydroxide paste was used for root-end hard tissue deposition is Marmasse (1953); this author was the first to recommend a resorbable paste for this purpose using a proprietary brand called Calxyl, which will be discussed later.

Chemically, this paste was evaluated for alterations in the pH of dental structures when used as a temporary dressing (Tronstad et al. 1981).

Clinically, it has been evaluated in indirect pulp capping (Nyborg 1955), in apexification procedures (Cvek 1972) and as a temporary dressing both after vital pulpectomy (Nyborg & Tullin 1965, Stromberg 1969) and in non-vital teeth (Cvek 1976), and it has been widely used in the treatment of post-traumatic sequelae such as luxation and replantation (Cvek 1973, 1989).

Methylcellulose and carboxymethylcellulose. Historically, methylcellulose was the vehicle of a paste widely used in South America, mainly in Argentina. Maisto & Capurro (1964) introduced a paste composed of equal volumes of calcium hydroxide powder and iodoform mixed with a 5% aqueous solution of methylcellulose.

Biological responses were evaluated after the implantation of this paste in subcutaneous connective tissue of the rat (Souza et al. 1977). In animal studies, the induction of a hard tissue barrier after apexification procedures was evaluated in dogs (Holland et al. 1971) and monkeys (Manfredi 1971). Its antibacterial effect was evaluated by Di Fiore et al. (1983). In human apexification procedures it was recommended by Maisto & Capurro (1964), Heithersay (1970a, b) and Holland et al. (1973), whilst in indirect pulp capping it was recommended by Massler et al. (1957) and Krakow et al. (1974).

Laurichesse (1980) proposed the following modification of the original formula: calcium hydroxide and iodoform in a ratio 2/3:1/3, two drops of camphorated parachlorophenol and a 3% aqueous solution of methylcellulose as the vehicle.

More recently, Giro et al. (1993) proposed the use of carboxymethylcellulose or, according to the United States Pharmacopeia (1989), poly(carboxymethyl)ether of cellulose, as the vehicle in the following formula: 0.5 g of calcium hydroxide to 0.5 mL of a 1.66% solution of carboxymethylcellulose; in another suggested formulation, 0.25 g of zinc oxide was added for radiopacity. Both formulations were evaluated after pulpotomy in dog teeth.

Anionic detergent solution. It is well known that detergents decrease the surface tension between two surfaces and facilitate substance penetration. This is perhaps the reason why calcium hydroxide powder has been mixed with an aqueous detergent solution to increase the action of the calcium hydroxide deeper into the tissues.

Unfortunately, only two studies have appeared in the literature dealing with these substances, Barbosa...
et al. (1994) tested the antibacterial effect of a paste composed of calcium hydroxide and sodium lauryl diethylene glycol ether sulphate, and Peniche et al. (1996) evaluated the pH of a paste containing calcium hydroxide and sodium lauryl sulphate.

Proprietary brands

Calxyl (Otto & Co., Frankfurt, Germany). This paste represents the oldest manufactured calcium hydroxide paste and was introduced by Hermann (1920). He was the first to suggest this material be employed as a dressing with the purpose of maintaining vital pulp tissue and inducing healing by the formation of a calcified barrier at the site of amputation (Masterton 1964). According to Webber (1984), Hermann was looking for a biological and compatible substance when in direct contact with pulpal and periapical tissues because he was dissatisfied with the cytotoxic medicaments used at that time.

This paste is a solution of calcium hydroxide in water with the addition of the following blood salts: sodium carbonate, sodium chloride, calcium chloride, potassium chloride and traces of magnesium. It is manufactured both without (red label) and with a radiopacifier (blue label) (Castagnola 1956).

Calxyl became very popular and was extensively studied for use in the maintenance of pulp vitality. A large number of studies appeared in the literature between 1930 and 1950. The interested reader should consult the review by Masterton (1964).

It is important to note that Rohner (1940) used this paste to demonstrate the deposition of an apical barrier over the pulp remnant after vital pulpectomy. This study was the first to show that deposition microscopically.

Marmasse (1953) was the first to indicate Calxyl and other resorbable pastes such as Walkhoff’s paste and Dentinigene (Lab. Pierre Roland, Paris, France) in cases requiring apexification:

…the use of a resorbable paste (Calxyl, Walkhoff, Dentinigene) will allow invagination of the periodontal tissue inside the root canal sealing off the apical foramen by deposition of cementum, allowing root ingrowing and apical shape although the absence of a vital pulp.

Calzyl has been evaluated chemically for its pH (Fuss et al. 1996), ionic dissociation (Tamburic et al. 1993, Beltes et al. 1997) and its effect upon human serum proteins (Rantanen & Louhivouri 1959). Histologically, the response of implants in rat subcutaneous tissue was evaluated by Souza et al. (1977), after pulpotomy of monkey teeth (Masterton 1966) and during apexification in dogs (Binnie & Rowe 1973) and monkeys (Chosak et al. 1997).

In humans this paste has been employed for direct pulp capping and pulpotomy (Hess 1950, Masterton 1966), apexification (Ehrmann & Geurtsen 1985, Rotstein et al. 1990) and in orthograde root canal treatment (Hermann 1935a,b,c, Juge 1959). Varella et al. (1966) suggested adding a corticosteroid substance (2% methylprednisolone stearate) to Calxyl for direct pulp capping in human teeth to reduce postoperative pain and inflammation.

Pulpdent and Tempcanal (Pulpdent Corp., Brookline, MA, USA). Pulpdent is a commercial paste consisting of calcium hydroxide (52.5%) in an aqueous suspension of methylcellulose (Goldberg 1982). It was employed initially in direct pulp capping and pulpotomy (Berk 1950) and became more popular when Heithersay (1975) used it for apexification and other clinical situations such as perforations, large periapical lesions and external resorption.

Its chemical properties were evaluated for its antibacterial effect (Stevens & Grossman 1983, Stuart et al. 1991), solvent effect (Metzler & Montgomery 1989), pH (Conrado et al. 1965) and composition (Freitas 1982). Biologically it was studied after implantation in rat subcutaneous connective tissue (Souza et al. 1977), after pulpotomy in dog teeth (Berk 1950) and in the indirect pulp capping (Tronstad & Mjor 1972) and apexification of pulpectomy in monkey teeth (Weinstein & Goldman 1977).

vertically, a thicker mix is obtained by adding more calcium hydroxide powder to the paste (Burke 1976, Stock 1985).

Shay et al. (1960) introduced a paste composed of Pulpdent. 50 mg of Achromycin (Pfizer), a broad-spectrum antibiotic and three drops of camphorated parachlorophenol, and evaluated it both clinically as a direct pulp capping agent and experimentally for its antibacterial activity.

Tempcanal is a similar calcium hydroxide in aqueous methylcellulose but modified to allow flow through 22, 25 and 27 gauge needles (Milosevic 1991) and has barium sulphate to improve radiopacity (Luvizotto et al. 1996). The properties were evaluated for ionic dissociation both in vitro (Beltes et al. 1997) and within the root canal (Deardorf et al. 1994) and for paste residue after irrigation (Guignes et al. 1991).

Calcium hydroxide pastes

Fava & Saunders

Calvital (Neo Dental Chemical Products Co., Tokyo, Japan). This paste was originally proposed by Sekine et al. (1963b) and is composed of a powder and a liquid. The powder has the following composition: calcium hydroxide (78.5%), iodoform (20%), guanoflacin (0.1%) and sulphatiazol (1.4%), whilst the liquid is composed of T-cain (0.5%), propyleneglycol (0.02%) and distilled water (99.48%). This paste was introduced in the 1980s and, according to Ghose et al. (1987), is composed of calcium hydroxide (56%), calcium chloride (8 mg), sodium chloride (0.35 mg), sodium bicarbonate (4 mg), potassium chloride (8 mg) and water sufficient for 100 g of the paste.

Some evaluation studies were performed regarding its pH and ionic dissociation (Leonardo et al. 1992, Nerwich et al. 1993, Beltes et al. 1997), antibacterial effect (Byström et al. 1985, Reit & Dahlen 1988, Sjogren et al. 1991), tissue solvent effect (Andersen et al. 1992) and effect on apical microleakage (Porkeaw et al. 1990), and in animal studies, it was evaluated in replanted dog teeth (Lenhedh et al. 1991).

Hypocal (Ellinan Co., Hewlatt, NY, USA). According to Goldberg (1982) this paste is composed of calcium hydroxide (45%), barium sulphate (5%), hydroxymethylcellulose (2%) and water (48%). However, Ida et al. (1989) presented the following formula: calcium hydroxide (45%), barium sulphate
(5%), glycolcellulose (2%) and distilled water (48%). Its pH was evaluated by Conrado et al. (1965) and Ida et al. (1989). In animal studies this paste was evaluated in the treatment of root resorption in replanted dog teeth (Gregoriou et al. 1994).

Clinically, it has been evaluated in the apexification of human deciduous teeth (O’Riordan 1980) and human permanent teeth (Breillat et al. 1983b, Yates 1988, Kleier & Barr 1991, Mackie et al. 1994).

Calcicur (VOCO, Auxhaven, Germany). According to the manufacturer, this paste is composed of radiopaque calcium hydroxide in an aqueous vehicle. Its ionic release was evaluated by Beltes et al. (1997).

DT Temporary dressing (Dental Therapeutics AB, Nacka, Sweden). According to the manufacturer, this paste is composed of unoxygenated calcium hydroxide and sterilized distilled water.

Calcipulpe (Specialités Septodont, Saint-Maur, France). This paste is composed of calcium hydroxide and carboxymethylcellulose and was evaluated for its ionic liberation (Tamburic et al. 1993) and pulp reactions after direct human pulp capping (Nagakubo 1969, Sekine et al. 1971).

Hidropulpe (Lab. Zizine, France). This paste is composed of calcium hydroxide and barium sulphate in a solution of methyl benzoate. This paste was cited by Breillat & Laurichesse (1986) and Deveaux et al. (1986) but no studies have appeared in the literature evaluating its chemical or biological properties.

Serocalcium (Casa Wild, Basel, Switzerland). According to Castagnola (1956) and Masterton (1964), this paste has a similar composition to Calxyl and has been employed for direct pulp capping and pulpotomy of human teeth (Hess 1950, Patterson & Van Huysen 1954, Rantanen & Louhivuori 1959, Tuero 1974).

Calcigel (Lab. Septodont, France), Endocal (Lab. Biodica, France), Hydroxine (Lab. Ato Zizine, France). These three proprietary brands are basically composed of calcium hydroxide, methylcellulose and water (Rocca 1993).

Acrical (Bames-Hind Laboratories, USA). This paste is composed of 9-aminoacridine hydrochloride (0.2%), benzalkonium chloride (0.1%), calcium hydroxide (28%) and barium sulphate (5%). Benzalkonium chloride is a cationic detergent and thus a water-soluble vehicle. This paste was evaluated for pulp capping in human teeth (Nagakubo 1969, Sekine et al. 1971)

Cabnex (Associated Dental Products Ltd, London, UK). This paste contains sterilized calcium hydroxide plus blood serum salts and methylcellulose and was evaluated in human pulpotomies by Santini (1985).

Viscous vehicles

Pastes prepared at the time of use

Glycerine. Glycerine is a viscous, colourless transparent liquid with a characteristic odour, sweetish in taste and hygroscopic. It can be mixed with water, acetone, alcohol and other glycols in any proportion but is insoluble in chloroform, ether, benzene and volatile oils. Its molecular weight is 92.02 (Lopes et al. 1996, 1998).

Because of its hygroscopic properties, glycerine is very useful as a moistening substance and, as it is soluble in water, it is easily removed. Furthermore, it is non-toxic (Olson & Hoover 1975) and is used as an intracanal lubricant (Walton & Torabinejad 1989).

The first use of a calcium hydroxide paste with glycerine in its formula was reported by Steiner et al. (1968) in a paste composed of calcium hydroxide, camphorated parachlorophenol, barium sulphate and glycerine. This paste was employed for root-end closure of immature non-vital teeth.

The paste is obtained by mixing calcium hydroxide with synthetic glycerine as proposed by Çalıkkan et al. (1994) and Rivera & Williams (1994) and has been evaluated for its antibacterial effect by Siqueira & Uzeda (1997). A radiopacifier may be added to improve radiopacity, such as iodoform (Salamat & Rezai 1986) or barium sulphate in a 1:8 ratio with the calcium hydroxide powder (Çalıkkan & Sen 1996, Çalıkkan & Turkun 1997).

Siqueira & Uzeda (1996) added camphorated parachlorophenol to a calcium hydroxide–glycerine paste in order to extend its antibacterial spectrum against some species of obligate and facultative anaerobic bacteria. The addition of zinc oxide or iodoform to improve radiopacity of the paste did not interfere with antibacterial action (Siqueira et al. 1996, 1997). Such radiopacifiers may be added to the paste in a 1:3 or 1:6 ratio with calcium hydroxide powder (Siqueira 1997).

This paste has been used in cases of chronic abscesses with extraoral fistulae (Salamat & Rezai 1986,
Çaliskan et al. (1994), acute abcesses or chronic periapical lesions (Çaliskan & Sen 1996), internal resorption with or without root perforation (Çaliskan & Turkun 1997) and to repair a fractured root (Çaliskan & Pehlivan 1996) even with an associated site of internal resorption (Çaliskan & Turkun 1996).

Polyethyleneglycol. Polyethyleneglycol is a viscous, colourless liquid with a characteristic odour and it is slightly hygroscopic. It is miscible in any proportion with water, acetone, alcohol and other glycols but is insoluble in ether and benzene (Lopes et al. 1996, 1998).

According to the United States Pharmacopeia (1989) it is a polymer of ethyleneglycol and water, represented by the formula \(\text{H(OCH}_2\text{CH}_2\text{)}_n\text{OH} \) in which \(n \) represents the average number of oxyethylene groups. Its pH ranges between 4.5 and 7.5.

These pastes were evaluated for their pH (Estrela et al. 1995b) and ionic release (Marques et al. 1994, Estrela et al. 1995a). Tissue reactions were evaluated after their implantation in rat subcutaneous connective tissue (Mauricio et al. 1987, Zelante et al. 1992) and after pulpotomy in dog teeth (Giro et al. 1993).

A paste composed of calcium hydroxide (70%), iodoform (30%) and polyethyleneglycol 1500 as the vehicle was employed by Bellacosa et al. (1993) in a clinical case of external/internal resorption, whilst a paste composed only of the powder and polyethyleneglycol 400 was suggested by Santos (1996) for use in the treatment of external cervical resorption after bleaching of pulpless teeth.

Maeda (1960) introduced a paste containing calcium hydroxide, polyethyleneglycol 1500 as a base and sulphisomidine and eugenol as antibacterial agents. In the following year, Kurimoto (1961) tested the same paste as an intracanal dressing, with and without the antibacterial agents, in human infected pulpless teeth with associated periapical lesions and found a high frequency of favourable cases.

Leonardo et al. (1976) introduced a paste containing calcium hydroxide (2 g), polyethyleneglycol 400 (1.75 mL), barium sulphate (1 g) for radiopacity and hydrogenized colophony (0.05 g) to improve physical properties. Later Leonardo & Leal (1991) replaced the barium sulphate by zinc oxide in the same proportion. Furthermore, 0.15 mL of camphorated parachlorophenol was added to the paste when used in cases of infected root canals; this paste is now a proprietary brand.

A simple paste may be obtained by mixing calcium hydroxide (3 g) with polyethyleneglycol 400 (1.75 mL) (Zelante et al. 1992). However, Pinto & Lessi (1984) and Lessi & Alvares (1988) suggested mixing the calcium hydroxide powder to a creamy consistency with iodoform (30%) and polyethyleneglycol 1500 (70%). Another formula has been suggested (Zelante et al. 1992): calcium hydroxide (3 g), zinc oxide (3 g) or iodoform (1.5 g) and polyethyleneglycol 400 (3.5 mL). Ulyssea et al. (1992) suggested using barium sulphate as the radiopacifier in a 1:4 ratio with the calcium hydroxide powder.

Propyleneglycol. Propyleneglycol is a clear, colourless, odourless liquid with a slightly characteristic taste resembling that of glycerine. Chemically, it is a dihydric alcohol with a syrupy consistency, hygroscopic in nature and non-toxic that can be mixed with water, acetone and alcohol in any proportion. According to the United States Pharmacopeia (1989), its formula is \(\text{CH}_3\text{CH(OH)CH}_2\text{OH} \) and its molecular weight is 76.09. It is widely employed as a useful vehicle for pharmaceutical preparations such as antihistamines, barbiturates, paracetamol and those used for parenteral administration. Moreover, this substance is a suitable vehicle for members of the vitamin B group, pyrazolines, aspirin and chloral hydrate (Balcow & Martindale 1972, Bhat & Walkevar 1975, Baity et al. 1993, Simon et al. 1995, Lopes et al. 1996).

Bhat & Walkevar (1975) demonstrated a strong antibacterial action of propyleneglycol against common microorganisms found in infected root canals and suggested its wider application in endodontics as a gentle vehicle for intracanal medicaments. Its hygroscopic nature permits the absorption of water, which ensures a good sustained release of calcium hydroxide for long periods. Another advantage of this substance is its consistency, which improves the handling qualities of the paste (Baity et al. 1993, Simon et al. 1995). Simon et al. (1995) recommend propyleneglycol as the best vehicle in calcium hydroxide preparation.

The first report using a calcium hydroxide paste containing this vehicle was by Suijo (1957), who added antibacterial agents and asbestos powder. Laws (1962) suggested the use of 10 g of calcium hydroxide powder with 7.5 mL of propyleneglycol and later suggested the following formulation: calcium hydroxide (four parts), barium sulphate (one part) for radiopacity and propyleneglycol (Laws 1971). Holland (1994) suggested using a simplified formulation of calcium hydroxide, iodoform and propyleneglycol, as did Soares et al. (1996) but replacing the iodoform for zinc oxide to improve radiopacity.
These pastes have been evaluated for their pH (Peniche et al. 1996), ionic dissociation (Simon et al. 1995, Felippe 1998), effect on apical microleakage (Siqueira & Fraga 1995) and tissue reactions after implantation in the rat subcutaneous connective tissue (Souza et al. 1977) and after pulpotomy in dog teeth (Bittencourt et al. 1997). In humans it was evaluated as an intracanal dressing after vital pulpectomy (Saijo et al. 1957, Machida 1960, Sekine et al. 1963a) and for the non-surgical treatment of large periapical lesions (Hussey & Kennedy 1990).

Proprietary brands

Calen (S.S. White – Artigos Dentários, Rio de Janeiro, RJ, Brazil). This paste is the proprietary brand of Leonardo & Leal’s paste, the formulation of which is: calcium hydroxide (2.5 g), zinc oxide (0.5 g), hydrogenized colophony (0.05 g) and polyethyleneglycol 400 (1.75 mL). This is the unique proprietary brand of a calcium hydroxide paste containing this viscous vehicle.

Some chemical characteristics were evaluated regarding pH and ionic release (Leonardo et al. 1992) and its diffusion through dentine (Leonardo et al. 1993a). In animal studies, this paste was evaluated for pulpotomy (Bittencourt et al. 1997) and apexification of non-vital immature dog teeth (Silva et al. 1991) and for tissue reactions in rat subcutaneous connective tissue (Motta et al. 1997).

In humans it has been used in apexification procedures (Leonardo et al. 1978a,b, Sahli 1989), in the treatment of large periapical lesions originating from infected root canals (Sahli 1988, Gutmann & Fava 1992), as an interappointment dressing in cases of vital pulpectomy (Fava 1992, 1994), in acute apical periodontitis (Fava 1998) and in endodontic retreatment after endodontic and surgical failures (Fava 1996).

Calen + camphorated parachlorophenol (S.S. White – Artigos Dentários, Rio de Janeiro, RJ, Brasil). Leonardo et al. (1991) added camphorated parachlorophenol (CMCP, 0.15 mL) to the original Calen formulation to be used in cases of non-vital and infected teeth with associated periapical lesions. This paste was chemically evaluated for its pH and ionic release (Leonardo et al. 1992) and diffusion through dentine (Leonardo et al. 1993b).

It was also evaluated for its antibacterial action when used as a dressing after biomechanical preparation on anaerobic bacteria of infected non-vital teeth (Assed et al. 1996). It was also employed in apexification procedures in dog teeth (Silva et al. 1991, Leonardo et al. 1993b), and the healing process of induced chronic periapical lesions in dog teeth has been studied (Leonardo et al. 1994, 1995).

The combination of calcium hydroxide and camphorated parachlorophenol was proposed in the 1960s by Kaiser (1964) and Frank (1964, 1966). In the following decades this was not favoured by some authors who believed there was no necessity to add a cytotoxic agent (CMCP) to calcium hydroxide (Spangberg 1994). However, in the 1990s, this combination has again been advocated to extend the antibacterial spectrum of calcium hydroxide mainly against some facultative or aerobic bacteria (Leonardo et al. 1994). Apart from extending the antibacterial spectrum, the combination has a broad antibacterial action and was also effective in eliminating strict and facultative anaerobic bacteria located in dentinal tubules (Siqueira 1996, Siqueira et al. 1996, 1997).

Chemically, it has been shown that CMCP plus calcium hydroxide yields calcium p-chlorophenololate, a weak salt. In solution with water, the salt takes up the H\(^+\) ion and goes back into the p-chlorophenol, which gives an excess of OH\(^-\) ions from the water (Anthony et al. 1982) thus maintaining the high pH. Leonardo et al. (1993c) stated that this formulation prolongs the antibacterial action because of the progressive release of parachlorophenol from the calcium p-chlorophenolate complex.

The low liberation of p-chlorophenol is probably not high enough to be cytotoxic to the tissues, as demonstrated by Holland et al. (1979a) and Leonardo et al. (1993b). This absence of cytotoxicity may be because of the small concentration of parachlorophenol released and because, as the high pH causes a superficial proteic denaturation on the tissue it contacts, this may act as a physical barrier to a deeper diffusion of the p-chlorophenol into the tissues (Siqueira et al. 1996).

Calen + p-chlorophenol. This is the most recent formulation suggested by Leonardo et al. (1993c), who demonstrated that camphor is not necessary for the release of Ca\(^{2+}\) ions, pH and solubility. Few studies have appeared in the literature. This paste was evaluated for its diffusion through dentine (Leonardo et al. 1993a, Esberard et al. 1996), and Alencar et al. (1997) evaluated the residue of the paste after its use as an intracanal dressing in pulpless dog teeth.
Oily vehicles

Pastes prepared at the time of use

Olive oil. Purified olive oil is a primrose or slightly green coloured liquid with a characteristic odour, which is non-soluble in water but fairly soluble in alcohol. Chemically it is composed of esters of fatty acids such as oleic, linoleic, palmitoleic, estearic and linolenic acids. It must be kept in an amber coloured flask. It promotes low solubility for the calcium hydroxide paste and improves its physical properties. Because of the slow solubility, the paste has a low diffusion within the tissues (Lopes & Costa Filho 1984, Lopes et al. 1986, 1996, 1998, Lopes 1987).

Fatty acids. Matsumoto et al. (1989) introduced two formulations called New B and New B-2 with a powder:liquid ratio of 1.2 g mL⁻¹. The first formulation has calcium hydroxide powder (100%) and olive oil as the vehicle (100%). New B-2 was composed of calcium hydroxide (65%), bismuth carbonate (15%), resin and zinc oxide (20%), whilst the liquid vehicle was composed of fatty acids (85%) and glycol (15%).

Camphorated parachlorophenol. Camphorated parachlorophenol, or camphorated parachlorophenol (CMCP), was introduced by Walkhoff in 1891 (Breillat & Laurichesse 1986). It comprises 33–37% parachlorophenol and 63–67% camphor (United States Pharmacopeia 1989).

Parachlorophenol (C₆H₅OCl, molecular weight 128.56) has a characteristic phenolic odour and is presented in crystal form. Camphor (C₁₀H₁₆O, molecular weight 152.54) is a ketone obtained from Cinnamomum camphora or synthetically in the laboratory; it has a characteristic and penetrating odour, a bitter taste and low solubility in water (United States Pharmacopeia 1989, Lopes et al. 1998). The pronounced disinfectant action of parachlorophenol depends on the liberation of the chlorine in the presence of phenol (Breillat & Laurichesse 1986). When camphorated parachlorophenol is the vehicle of a calcium hydroxide paste, it is an oily vehicle because camphor is considered an essential oil with low solubility in water (Lopes et al. 1998).

A paste containing the above constituents was introduced by Frank (1964) and Kaiser (1964) and became very popular in the United States after the publication of an article (Frank 1966) describing the guidelines for apexification procedures in human immature non-vital teeth.

Chemically this paste was evaluated for its pH (Anthony et al. 1982, Fuss et al. 1996, Peniche et al. 1996) and ionic release (Simon et al. 1995). Its antibacterial effect was evaluated by Di Fiore et al. (1983), Estrela et al. (1995a) and Siqueira & Uzeda (1997).

Vital tissue reactions were evaluated when the paste was implanted into rat subcutaneous connective tissue (Souza et al. 1977, Mauricio et al. 1987), used in apexification procedures in dog (Holland et al. 1992) and monkey teeth (Dilewski 1971, Steiner & Van Hassel 1971, Torneck et al. 1973) and used as a temporary dressing in non-vital teeth with associated periapical lesions in dog teeth (Holland et al. 1979b).

Another clinical situations advocated for the use of this paste are perforation defects after internal resorption (Frank & Weine 1973), reversal of external root resorption (Burke 1976, Montgomery 1984) and as an intracanal dressing in cases of non-vital teeth with associated large periapical lesions (Costa et al. 1981, Souza et al. 1989).

For a better visualization on radiographs, contrast media such as barium sulphate (Ham et al. 1972, Stewart 1975, Arens 1977, Gilbert 1983), iodoform and zinc oxide (Ramos & Bramante 1997) were added.

Metacresylacetate. According to Weiss (1966) this substance was first introduced to dentistry by Coolidge in 1912 for the treatment of necrotic pulps.

Chemically, metacresylacetate is the acetic ester of metacresol in combination with benzene (Spangberg 1994). It is an oily liquid with antibacterial, analgesic and sedative properties (Lecazedieu 1986). Schilder & Amsterdam (1959) showed a minimal inflammatory potential for this substance, whilst Vander Wall et al. (1972) showed less cytotoxic activity compared with camphorated parachlorophenol. Its proprietary brand name is Cresatin (Weiss 1966, Stewart 1975, Morse et al. 1990, Spangberg 1994).

When calcium hydroxide is mixed with metacresylacetate, a chemical reaction occurs yielding calcium
cresilate and acetic acid. The acetic acid suffers an ionic dissociation and gives off H\(^{+}\) ions, which decreases the pH. In a comparative study, it was shown that this association gave a reduced pH when compared with pastes where calcium hydroxide was mixed with saline or camphorated parachlorophenol (Anthony et al. 1982). Its antibacterial effect on *Streptococcus sanguis* has been evaluated by Di Fiore et al. (1983).

This paste has been used for pulp capping (Weiss 1966), pulpotomy (Tencu & Tsamtsouris 1978), root-end induction in immature non-vital teeth (Klein & Levy 1974, Levy 1980), retreatment after endodontic and surgical failures (Stewart 1975, West & Lieb 1985) and some types of root resorption (Stewart 1975). For a better radiographic visualization, Stewart (1975) suggested adding barium sulphate in a 1:4 ratio with the calcium hydroxide powder and also suggested preparing a thick paste or a putty consistency because it will not harden, as is the case when calcium hydroxide is mixed with camphorated parachlorophenol.

Eugenol. Eugenol (C\(_{10}\)H\(_{12}\)O\(_2\), molecular weight 164.20) is obtained from oil of cloves and other sources (United States Pharmacopeia 1989). A paste containing calcium hydroxide and eugenol was evaluated for pulpotomy in deciduous dog teeth (Russo & Holland 1974). In humans it has been employed as an intracanal dressing for vital and non-vital deciduous teeth (Murata 1959).

Proprietary brands

Endoapex (Lab. Inodon Ltda, Porto Alegre, RS, Brazil). This paste is composed of calcium hydroxide, liquid silicone and iodoform and was evaluated for apexification of immature dog teeth (Holland et al. 1992).

L & C (Herpo Produtos Dentários Ltda., Rio de Janeiro, RJ, Brazil). This paste is the proprietary brand of the paste introduced by Lopes & Costa Filho (1984). The powder is composed of calcium hydroxide (2 g), bismuth carbonate (1 g) and hydrogenized colophony (0.05 g), whilst the liquid is olive oil (0.16 ml.).

The paste was evaluated for its ionic dissociation (Marques et al. 1994, Esberard et al. 1996), apical microleakage (Siqueira & Fraga 1995), after pulpotomy (Bittencourt et al. 1997) and in the apexification of immature dog teeth (Silva et al. 1991). It was also evaluated for tissue reactions after implantation in rat subcutaneous connective tissue (Motta et al. 1997).

In humans it has been used in apexitification procedures (Lopes & Costa Filho 1984, Lopes 1987, Lopes et al. 1998) and other clinical situations such as resorptions and perforations (Lopes et al. 1986).

Vitapex (Neo Dental Chemical Products Co. Ltd, Tokyo, Japan). This paste is very popular in Japan and was introduced by Kawakami et al. (1979a,b). It is composed of calcium hydroxide (30.3%), iodoform (40.4%), silicone oil (22.4%) and other substances not described (6.9%).

Since then, a lot of experimental research has been carried out to evaluate the biological behaviour of this paste and its components within the tissues (Kawakami 1984, Kawakami et al. 1987a,b,c, 1989, 1990, 1991), as a root canal dressing in non-vital dog teeth (Shibuya 1980) and its effect on apical microleakage (Porkaew et al. 1990).

Clinically it was evaluated for healing of periapical tissues when used as an intracanal dressing in human teeth (Eda et al. 1985).

Other pastes

Apart from those already reviewed, other pastes have been cited in the literature. A formulation was proposed by Flohr (1936) where calcium hydroxide was mixed with sterilized dentine chips and alkaline blood salts. Another formulation of a paste was composed of calcium hydroxide, methylcresilate and camphorated parachlorophenol (Blanc-Benon 1967).

A paste composed of calcium hydroxide in a 1% aqueous solution of parachlorophenol was suggested by Martins et al. (1979), whilst Oletto & Melo (1985) suggested a paste containing a 2% aqueous solution of CMCP. Another suggestion was a paste made with calcium hydroxide and collagen gel, which was evaluated by Pissiotis & Spangberg (1990).

A proprietary brand named Multical composed of calcium hydroxide (34%), barium sulphate (15%) and chloro-timonol (51%) was cited by Webber (1983) and Alliet & Vande Voorde (1988).

Some proprietary brands cited in the literature with neither their formulae nor the names of manufacturers are Hypo-Line (Alliet & Vande Voorde 1988) and Calcipulp (Simpson 1970).

Other proprietary brands discussed in the literature but without descriptive formulae are Dentinigene (Lab. Pierre Rolland, Paris, France) (Castagnola 1956); Biocale (Hammasvaline Oy, Helsinki, Finland) (Rantanen & Louhivuori 1959); DFL calcium
hydroxide (Dental Filling Lab., London, UK) (Souza et al. 1977); Carbital (Neo Chemical Products Ltd, Japan) and Caldrium (Opotow Dental Mfg Corp., USA) (Busran 1983); Octocanal (Lab. Clarben, Madrid, Spain) (Alventosa 1992, Guerrero 1994); Cinacal (Zdravlje, Leskovak, Yugoslavia) (Tamburic et al. 1993); Hydrocalcium (Société Endo Technologique, Marseille, France) (Fuss et al. 1996); and Rootcal (Ellman International Inc., Hewlett, NY, USA) (Rehman et al. 1996).

Calcium hydroxide and other substances

Radiographic contrast media

Calcium hydroxide mixed with any of the quoted vehicles lacks radiopacity and is not easily seen radiographically. This is the main reason radiopaque materials are added to the paste, thereby allowing identification of lateral and accessory canals, resorptive defects, fractures and other structures (Smith & Woods 1983, Alaçam et al. 1990). A radiopacifier should have an atomic weight higher than calcium for radiopacity purposes (Tavano et al. 1978). Some examples of such substances are barium sulphate and bismuth, and other compounds containing iodine and bromine (Alaçam et al. 1990).

As bismuth salts have some degree of toxicity and soluble barium salts are extremely toxic materials and relatively insoluble, the actual alternative is to use a more soluble radiopaque substance. Tavano et al. (1978) stated that there are three types of iodine compounds: soluble iodine organic substances, non-soluble iodine oils and slowly absorbable iodine oils.

When mixed with calcium hydroxide powder, these substances will become the vehicle of the paste as well as being the radiopaque agent. Holland et al. (1983) compared Telebrix (an aqueous vehicle) with Lipiodol (an oily vehicle) as vehicles in two calcium hydroxide pastes and obtained better results with Lipiodol. Two other studies have appeared in the Brazilian literature using these types of vehicles. Mauricio et al. (1987) tested the same paste suggested by Holland et al. (1983) (calcium hydroxide + Lipiodol), whilst Cesar et al. (1985) tested a paste composed of calcium hydroxide (2 g), barium sulphate (0.5 g), hydrogenized colophony (0.05 g) and Lipiodol as the vehicle. Both studies were performed in animals and no studies have evaluated these suggested formulations in humans.

Smith & Woods (1983) tested a calcium hydroxide–diatrizoate paste. Diatrizoates are substances that have been used previously to aid in the diagnosis of periapical lesions (Forsberg & Hagglund 1960, Cunningham & Penick 1968) and to elucidate the pathways of anaesthetic injections (Berns & Sadove 1962, Galbreath 1970). A commercially available soluble iodine compound (Renografling) containing aqueous solutions of 66% diatrizoate meglumine and 10% sodium diatrizoate was mixed with calcium hydroxide powder and compared with a barium sulphate-calcium hydroxide paste. The diatrizoate–calcium hydroxide paste was more manageable, successfully induced apical closure in a non-vital traumatized maxillary central incisor and did not obscure the apical radiographic evaluation.

Some time later, Alaçam et al. (1990) tested another organic iodine compound, iothalamate. This substance is soluble in water, clear and colourless to pale yellow in colour, slightly viscous in consistency and has been used in diagnostic urography, angiography and venography. A iothalamate–calcium hydroxide paste showed similar results when compared with a diatrizoate–calcium hydroxide paste and these two iodine organic compounds can be used as alternatives to barium sulphate and other radiopacifiers.

Corticosteroid-antibiotic solutions

The use of corticosteroids to reduce inflammation and maintain the vitality and integrity of the injured pulp tissue is an established procedure (Fiore-Donno & Baume 1962, Lawson & Mitchell 1964). As calcium hydroxide has been proved to offer better clinical results, some attempts have been made to mix these two substances and evaluate these formulations for endodontic purposes in vital pulp therapy, such as in direct pulp capping and pulpotomy procedures.

Bhaskar et al. (1969) mixed 0.03 mL of Metimyd (prednisolone-sulphacetamide with neomycin) with calcium hydroxide and this was implanted in the abdominal wall of male albino rats. After 12–20 days they concluded that the paste reduced the intensity and duration of oedema, reduced the intensity of the cellular infiltrate, markedly reduced or eliminated tissue necrosis and markedly reduced or eliminated the dystrophic calcification of tissue.

Otosporin is a corticosteroid-antibiotic solution composed of polymixin B sulphate (10 000 IU), neomycin (5 mg) and hydrocortisone (10 mg) in an aqueous vehicle and has been shown to maintain the integrity of the pulp stump as an interappointment dressing in vital pulpectomy in dog teeth (Holland et al. 1990).
1971) and gave favourable results in humans with regard to postoperative pain after pulpectomies (Fava 1992). Holland (1994) has proposed mixing calcium hydroxide powder with Otosporin.

A very popular formulation is a paste composed of a mixture of calcium hydroxide and Ledermix (Lederle Lab.). This anti-inflammatory–antibiotic compound has trimcinolone acetonide and demethylchlortetraacycline calcium and was chemically evaluated for its ionic diffusion by Abbott et al. (1989) and clinically evaluated in direct pulp capping, pulpotomy, routine intracanal dressing and apexification procedures (Eguren 1971, Schroeder 1981) and in the treatment of large periapical lesions (Heithersay 1985). Ledermix was also mixed with Calnex and evaluated for long-term prognosis after human pulpotomy (Santini 1985, 1986).

Antibiotics

The use of calcium hydroxide–antibiotic pastes has been suggested and these have been tested in laboratory studies, but no clinical studies are forthcoming.

Quillin et al. (1992) suggested adding metronidazole and chlorhexidine to a calcium hydroxide paste and tested this formulation for its antibacterial effect. Another association was proposed by Antoniazzi & Marques and cited by Takeuti et al. (1997), which involved mixing calcium hydroxide (0.13 g), metronidazole (0.6 g), ciprofloxacin (0.6 g) and polyethylene-glycol 1000.

Conclusions

The vehicle to which calcium hydroxide is mixed to form the paste used in endodontics affects the physical and chemical properties of the compound and hence its clinical applications. In general, viscous and oily vehicles prolong the action of the calcium hydroxide compared with water-soluble substances.

References

Čvek M (1976) Treatment of non-vital permanent incisors with calcium hydroxide. VI – A clinical, microbiological and radiological evaluation of treatment in one sitting of teeth with mature or immature root. *Odontologisk Revy* 2, 93–108.

Estrela C (1994) *Análise química de pastas de hidróxido de cálcio frente à liberação de íons cálcio.de íons hidroxila e formação de carbonato de cálcio na presença de tecido com i unto de cá NO (Thesis). São Paulo.

Frank AL (1964) Experimental efforts to effect a closing of the wide open pulless tooth allowing conservative therapy rather than surgical intervention. Twenty-first Annual Meeting of the American Association of Endodontics. USA: Washington, DC.

Calcium hydroxide pastes Fava & Saunders

Calcium hydroxide pastes

Martins TB, Bernardineli N, Berbert A, Bramante CM, Marques ALV, Lopes S (1979) Efeitos da biomecânica e de curativos de demora com hidróxido de calcio, paramonoclorofenol a 1% ou associa
to de ambos na redução da flora microbiana de canais radiculares infectados. ARS CURANDI em Odontologia 6, 44–57.

